Prediction of Clearance in Children Using a Combined Physiology-based and Enzyme Ontogeny Approach

Andrea N. Edginton1), Stefan Willmann 1), Barbara Voith 2), Walter Schmitt 1)

1) Bayer Technology Services GmbH, Biophysics, D-51368 Leverkusen, Germany
2) Bayer HealthCare AG, 42096 Elberfeld, Germany

INTRODUCTION
Clearance is a critical pharmacokinetic concept for scaling dosage, understanding the risks of drug-drug interactions and environmental risk assessment. Clearance is age-specific and dependent on the physiological maturity and enzymatic ontogeny of the responsible elimination processes [1]. These change dramatically during childhood making clearance assessments difficult. This study aimed to predict clearance through the scaling of various individual elimination pathways in the age range from premature neonates to sub-adults.

METHODS

Compound Sets

Model Development compounds: clearance dominated (>90%) by one process
Test compounds: 2 to 4 clearance processes

Required Information: Adult plasma clearance value, proportion attributed to each clearance process, fraction unbound (f_u)

Procedure

1. Conversion into Intrinsic Clearances

2. Separation into Single Processes

3. Scaling to Children

4. Back-Conversion to Plasma Clearance

RESULTS

• Similar age-dependent pattern for all compounds (Figures 1 & 2)
• Clearance low for neonates, rise above adult clearance around 6 months and decline to adult levels in the 20’s
• High correlation for both model development and test compounds (Figure 3)
• Clearance in premature neonates well-predicted (model development compounds $R^2 = 0.921$; test compounds $Q^2 = 0.810$)

CONCLUSIONS

• Relative importance of each elimination process altered in children. May be important for drug-drug interactions.
• Method provides a reasonable prediction of clearance in children from premature to sub-adults and, would be an important aspect of pediatric clinical trial preparation for the guidance of dosing regimes.
• Currently being integrated into the physiology-based pharmacokinetic modeling package, PK-Sim® (Bayer Technology Services GmbH, Leverkusen, Germany).

REFERENCES