Simulations of the dynamic itraconazole and midazolam interaction using individual coupled whole-body physiologically-based pharmacokinetic models

Andrea N. Edginton1, Michaela Vossen1, Michael Sevestre2, Christoph Niederalt1, In-Jin Jang3, Stefan Willmann1
1) Systems Biology, Bayer Technology Services GmbH, Leverkusen, Germany
2) Computational Solutions, Bayer Technology Services GmbH, Leverkusen, Germany
3) Dept of Pharmacology and Clinical Pharmacology, Seoul National University College of Medicine and Hospital, Seoul, South Korea

INTRODUCTION
- Physiologically-based pharmacokinetic (PBPK) modeling is a tool for the simulation of concentration-time profiles based on physiology (body and organ weights, blood flows, tissue composition etc.).
- Coupling PBPK models provides the opportunity to dynamically predict the interaction potential of two simultaneously administered compounds.
- Objective: To predict the effect of Itraconazole (ITZ) CYP3A4 inhibition on midazolam (MDZ) pharmacokinetics using individualized PBPK modeling. Herein, we used MDZ, 1OH-MDZ and 1OH-MDZ-GLU plasma concentration time data from 19 CYP3A5 genotyped (*1/*1, *1/*3, *3/*3) adults, who received MDZ intravenously in basal and CYP3A-inhibited metabolic states caused by ITZ co-administration [1].

METHODS

Defining the MDZ, 1OH-MDZ and 1OH-MDZ-GLU link
- For each individual (n = 19), three PBPK models (MDZ, 1OH-MDZ and 1OH-MDZ-GLU) were generated and dynamically linked such that the source functions of the two metabolites were the hepatic metabolism of MDZ and 1OH-MDZ, respectively.
- Microconstants (Eq. 1) in the liver intracellular space defined the link functions and were optimized for each individual using an average CYP3A concentration (E) of 2.8 nmol per g liver. Resulting individualized Km and Vmax values in different CYP3A5 genotype groups were compared.

\[
E_0 + S \xrightarrow{k_{i1}} ES \xrightarrow{k_2} E_0 + P \quad \text{(Eq 1)}
\]

Modeling CYP3A inhibition by Itraconazole
- Three sources of information were required to generate a model for ITZ and OH-ITZ. These were:
 - PBPK model for the oral administration of ITZ (intracellular unbound concentrations)
 - Time-dependent ratios between ITZ and OH-ITZ concentrations [2] were used to calculate OH-ITZ concentrations from ITZ concentrations
 - In vitro measure of CYP3A4 inhibition by ITZ and OH-ITZ [3]

RESULTS

Determination of MDZ microconstants
- Resulting Km and Vmax values for CYP3A are presented in Fig. 3 and are not correlated to CYP3A5 genotype
- The mean Km value (2.8 μM) was similar to the experimentally derived in vitro value of 3.9 μM [4].
- Inter-individual Vmax variability was approximately 5-fold. This variability theoretically accounts for different CYP3A abundances in the individuals from the Yu et al study [1].
- Optimized MDZ and MDZ metabolite curves (Fig. 4, blue lines) well fit the experimental data.

CONCLUSIONS
- PBPK modeling describes the plasma kinetics of MDZ, ITZ and their major metabolites.
- By dynamically coupling the MDZ and ITZ PBPK models, the relative changes in MDZ, 1OH-MDZ and 1OH-MDZ-GLU pharmacokinetics caused by CYP3A inhibition can be predicted.
- Dynamically coupled PBPK models are well suited to predict drug-drug interactions.